
Hybrid Automata

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

PALLAB DASGUPTA, 
FNAE, FASc,
A K Singh Distinguished Professor in AI,
Dept of Computer Science & Engineering
Indian Institute of Technology Kharagpur 
Email: pallab@cse.iitkgp.ac.in 
Web: http://cse.iitkgp.ac.in/~pallab

CS60030 FORMAL SYSTEMS 



INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2

This presentation acknowledges the contributions of 
various authors and teachers, including Prof. Rajeev Alur, 
Prof. Tom Henzinger, and Prof. Goran Frehse



Why are formal methods significant in control domain?

• Today, safety critical control systems:
• Are designed using CAD tools ( with hidden optimization algorithms )
• Are component based – often from multiple vendors
• Use electronic components ubiquitously
• Are often controlled / monitored in real time using embedded software ( cyber-physical systems )

• Examples:
• Aircraft stability
• Electronic braking in automobiles
• Smart Electrical Grids
• Atomic reactors

• How to prove that such systems are designed correctly?
• A big challenge, but highly recommended in international safety standards
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Safety Standards recommending Formal Methods 
in Verification
 Aeronautics (DO-178C)
 Automotive (ISO 26262)
 Industrial process automation (IEC 61508)
 Nuclear (IEC 60880)
 Railway (EN 50128)
 Space (ECSS-Q-ST-80C)



Development Cycle of Embedded Control
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Example: Cooling of a reactor

• One or more control rods are inserted between fuel rods

• Controls the neutron flux
• .. that is, the number of neutrons that split further uranium atoms

• Keeping them inserted for too long slows down the reactor

• Allowing the temperature to rise beyond a level is dangerous

• There exists points of no return – leads to meltdown
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A system with two rods
Three discrete states:
• State-1: None of the two rods are in the reactor
• State-2: Only Rod-1 is in the reactor
• State-3: Only Rod-2 is in the reactor

x ≡ temperature of coolant

Temperature changes in State-1 as per the following equation:

𝒙̇𝒙 = 𝟎𝟎.𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓

Note that:
• When x is above 500, temperature continues to rise
• When x is below 500, temperature continues to fall
If the temperature is allowed to fall below 500, the reactor will shut 
down.
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Effects of control rods
Cooling states:
• State-2: Only Rod-1 is in the reactor
• State-3: Only Rod-2 is in the reactor

Temperature changes in State-2 as per the following equation:

𝒙̇𝒙 = 𝟎𝟎.𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓

Temperature changes in State-3 as per the following equation:

𝒙̇𝒙 = 𝟎𝟎.𝟏𝟏𝟏𝟏 − 𝟔𝟔𝟎𝟎

Note that:
• Rod-1 cannot bring the temperature down if it crosses 560
• Rod-2 cannot bring the temperature down if it crosses 600
If  temperature crosses 600, meltdown is inevitable

Rod-1 may be inserted when x < 560
Rod-2 may be inserted when x < 600
.. and they have to be taken out sometime when x > 500
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Restrictions on control rods

For mechanical reasons, the rods can be lowered into the 
core only if it has not been there for at least 20 seconds
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Which means:
• Both rods may become unavailable at some time
• If temperature crosses 600 in the meantime, then 

consequences are catastrophic 

Control problem: Develop a strategy to operate the rods.

Safety validation problem: Prove that meltdown is never possible 
under any application of that strategy



Hybrid Automaton (Skeleton)
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State-1: No rods
𝒙̇𝒙 = 𝟎𝟎.𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓

State-3: Rod-1 is in
𝒙̇𝒙 = 𝟎𝟎.𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓

State-2: Rod-2 is in
𝒙̇𝒙 = 𝟎𝟎.𝟏𝟏𝟏𝟏 − 𝟔𝟔𝟔𝟔

x = 510 (Initial condition)

Insert-1

Remove-1

Insert-2

Remove-2



Introducing constraints on rod movement
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For mechanical reasons, the 
rods can be lowered into the 
core only if it has not been 

there for at least 20 seconds

State-1: No rods
𝒙̇𝒙 = 𝟎𝟎.𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓
𝒄̇𝒄𝟏𝟏 = 𝒄̇𝒄𝟐𝟐 = 𝟏𝟏

State-3: Rod-1 is in
𝒙̇𝒙 = 𝟎𝟎.𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓
𝒄̇𝒄𝟏𝟏 = 𝒄̇𝒄𝟐𝟐 = 𝟏𝟏

State-2: Rod-2 is in
𝒙̇𝒙 = 𝟎𝟎.𝟏𝟏𝟏𝟏 − 𝟔𝟔𝟔𝟔
𝒄̇𝒄𝟏𝟏 = 𝒄̇𝒄𝟐𝟐 = 𝟏𝟏

x = 510 (Initial condition)
c1 = c2 = 20

c1 ≥ 20 c2 ≥ 20

c1 := 0 c2 := 0

Insert-1

Remove-1

Insert-2

Remove-2



First-cut strategy on Hybrid Automaton
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Move an available rod in after temperature rises above 550. 
Remove the rod after the temperature drops to 510 or below.

State-1: No rods
𝒙̇𝒙 = 𝟎𝟎.𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓
𝒄̇𝒄𝟏𝟏 = 𝒄̇𝒄𝟐𝟐 = 𝟏𝟏

State-3: Rod-1 is in
𝒙̇𝒙 = 𝟎𝟎.𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓
𝒄̇𝒄𝟏𝟏 = 𝒄̇𝒄𝟐𝟐 = 𝟏𝟏

State-2: Rod-2 is in
𝒙̇𝒙 = 𝟎𝟎.𝟏𝟏𝟏𝟏 − 𝟔𝟔𝟔𝟔
𝒄̇𝒄𝟏𝟏 = 𝒄̇𝒄𝟐𝟐 = 𝟏𝟏

x = 510 (Initial condition)
c1 = c2 = 20

x > 550 and c1 ≥ 20 x > 550 and c2 ≥ 20

x ≤ 510
c1 := 0 x ≤ 510

c2 := 0

Insert-1

Remove-1

Insert-2

Remove-2



Modeling Exercise-1

Consider a hybrid system consisting of two tanks containing water.
• Each tank is leaking at a constant rate.
• Water is added at a constant rate, w, to the system through a

hose, which at any point of time is filling either one tank or the
other. It is assumed that the hose can switch between the tanks
instantaneously.
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• Let x1 and x2 denote the volume of water in Tank-1 and Tank-2 respectively.
• Let v1 and v2 denote the constant flow of water out of Tank-1 and Tank-2 respectively.
• The objective is to keep the water volumes above r1 and r2 respectively, assuming that the water volumes

are above r1 and r2 initially.
• This is achieved by a controller that switches the inflow to Tank-1 whenever x1(t) ≤ r1 and to Tank-2

whenever x2(t) ≤ r2

• Draw a Hybrid Automaton representing this strategy.



Partial Solution for Modeling Exercise-1
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• The controller can switch the inflow to Tank-1 when x1(t) ≤ r1 and to Tank-2 when x2(t) ≤ r2

• Does this automaton admit zeno behaviors? If so, how shall we eliminate them?
• Do we need location invariants?

x2(t) > r2 - e x1(t) > r1 - e

The automaton will have no (infinite) run if 𝒘𝒘 < 𝒗𝒗𝟏𝟏 + 𝒗𝒗𝟐𝟐



Modeling Exercise-2

There are three taps in the system, namely:

• Tap-1 having a flow rate of u = 5

• Tap-2 having a flow capacity of v = 2

• Tap-3 having a flow capacity of w = 4
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• Tap-2 and Tap-3 are always on.

• Tap-1 is switched on when x1 + x2 falls below 10 and is switched off when x1 exceeds 80.

• Initially, we have x1 = 50 and x2 = 50.

Draw a hybrid automaton for the system. Explain the dynamics of the system.

[Hint: Note that the outflow of Tank-2 changes discretely if it becomes empty before Tank-1.]



Modeling Exercise-3

Two trains are heading toward each other on a single track at constant speeds:

• Train E is travelling east at a fixed speed ve, and the train W is travelling west at a fixed speed vw. 

• A bird B is initially travelling east at a fixed speed vb along the line joining the two trains. 

• When the bird reaches the train W, it reverses its direction, heads west at the same speed vb, and 
reverses its direction again when it reaches the train E. This cycle repeats. 

Model the scenario as a hybrid automaton. 

• The hybrid automaton can have two locations, one each corresponding to the direction in which the bird is 
travelling, and three state variables that capture the positions of the train E, the train W, and the bird B.

• Draw the hybrid automaton showing the transition guards, location invariants, and the location dynamics.
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Train E Train W

ve vw



Another Example: Battery Charger
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Hybrid Automaton of a Battery Charger

• Modes of Operation:

• Off
• Precharge
• Constant Current
• Constant Voltage 
• Maintenance

• Model must specify:

• Dynamics of each mode
• Transition guards
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Formal Model for Hybrid System

Hybrid automaton: H = (Loc, Var, Lab, Edg, Act, Inv) consists of:
• A finite set Loc of locations.
• A finite set Var of real valued variables. 

• We write V for the set of valuations. A valuation ν is a function that assigns a real-value ν(x) ∈ R to each 
variable x ∈ Var.

• A state is a pair (ℓ, ν) consisting of a location ℓ ∈ Loc and a valuation ν ∈ V.
• A finite set Lab of synchronization labels.

• Lab necessarily contains the stutter label τ, i.e. τ ∈Lab. 
• A finite set Edg of edges called transitions. The next slide elaborates the types of transitions.
• A labeling function Act that assigns to each location ℓ ∈ Loc a set of activities. 

• Each activity is a function from the nonnegative reals R≥0 to V.
• The activities of at location are time-invariant.

• A labeling function Inv that assigns to each location ℓ ∈ Loc an invariant Inv(ℓ) ⊆ V.
• The system may stay at a location only if the location invariant is true; that is, some discrete transition 

must be taken before the invariant becomes false.



Transitions of a Hybrid Automaton

• Each transition e = (ℓ, a,µ, ℓ’) consists of :

• A source location  ℓ ∈ Loc, 
• A target location ℓ’ ∈ Loc,
• A synchronization label a ∈ Lab
• A transition relation µ ⊆ V2

• For each location ℓ ∈ Loc there is a set con ⊆ Var of control variables and  a stutter transition of the form 
(ℓ, τ, IDcon , ℓ), where (ν, ν ’) ∈ IDcon iff for all variables x ∈ Var, either  x ∉ con or ν(x) = ν ’(x). In other 
words, time may pass without any update on the control variables.

• The transition e is enabled in a state (ℓ, ν ) if for some valuation ν ’ ∈ V, (ν ,ν ’) ∈ µ. The state (ℓ’, ν ’) is 
then said to be a transition successor of (ℓ, ν ).



Time Deterministic Hybrid System

• A hybrid system H is time-deterministic if for every location ℓ ∈ Loc  and every valuation ν ∈ V, there is at 
most one activity f ∈ Act(ℓ) with f(0) = ν. 

• The activity f, then, is denoted by ϕℓ [ν].
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The runs of a hybrid system 

The state of a hybrid system can change in two ways:

• By a discrete and instantaneous transition that changes both the control location and the values of the 
variables according the transition relation

• By a time delay that changes only the values of the variables according to the activities of the current location. 
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A run of the hybrid system H, then, is a finite or infinite sequence,

of states σi = (ℓi , νi ) ∈ Σ, nonnegative reals ti ∈ R≥0 , and activities f ∈ Act(ℓi), such that for all i ≥ 0:

1. fi (0) = νi

2. For all 0 ≤ t ≤ ti ,   fi (t) ∈ Inv(ℓi) 
3. The state σi+1 is a transition successor of the state, 𝝈𝝈𝒊𝒊′ = (𝒍𝒍𝒊𝒊,𝒇𝒇𝒊𝒊 𝒕𝒕𝒊𝒊 )

• The state σ′i is called a time successor of the state σi

• The state σi+1 is called a successor of σi . 

We  write [H] for the set of runs of the hybrid system H.

....: 2

2

1

1

t
f2

t
f1

0t

0f0  σσσρ



Hybrid Systems as Transition Systems

With a hybrid system H, we associate the labeled transition system  τH = (Σ, Lab" ∪ R≥0 ,→ ), where the 
step relation → is the union of  the following two:

• The transition-step relations →a , for a ∈ Lab,

• The time-step relations →t , for t∈ R≥0
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Hybrid Systems as Transition Systems

• The stutter transitions ensure that the transition system τH is reflexive. For all states σ , σ′ , ∈, Σ, where 
σ = (ℓ, v) and for all t ∈ R≥0 ,

• It follows that for every hybrid system, the set of runs is closed under prefixes, suffixes, stuttering, and 
fusion.

• For time-deterministic hybrid systems, Time can progress by the amount t ∈ R≥0 from the state (ℓ, v) if 
this is permitted by the invariant of location ℓ; that is :

• We can rewrite the time-step rule for time-deterministic systems as:
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( ) '' σσσ,σσσ, a''t''t
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Example: Thermostat
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• When the heater is off, the temperature:

• When the heater is on:

• The resulting time-deterministic hybrid system is shown below:

( ) Ktetx −= θ

( ) ( )KtKt e1hetx −− −+= θ

l0
𝒙̇𝒙 = −𝑲𝑲𝑲𝑲

x ≥ m

l1
𝒙̇𝒙 = 𝑲𝑲(𝒉𝒉 − 𝒙𝒙)

x ≤ M

x = m

x = M
x = M



Linear Hybrid Systems

• A linear term over the set Var of variables is linear combination of the variables in Var with integer 
coefficients.

• A linear formula over Var is a Boolean combination of inequalities between linear terms over Var.

• The time-deterministic hybrid system H = (Loc Var, Lab, Edg, Act, Inv) is linear if its activities, invariants, 
and transition relations can be defined by linear expressions over the set Var of variables:

• For all locations ℓ ∈ Loc , the activities Act(ℓ) are defined by a set of differential equations of the 

form                , one for each variable x ∈ Var , where kx ∈ Ζ is an integer constant

• For all valuations v ∈ V, variables x ∈ Var , and nonnegative reals t ∈ R≥0

26

xkx =
.

[ ]( ) ( ) tvx ⋅+= xk  x v t φ



Linear Hybrid Systems

• For all location ℓ ∈ Loc the invariant Inv(ℓ) is defined by a linear formula ψ over Var.

• For all transitions e ∈ Edg the transition relation µ is defined by a guarded set of nondeterministic 
assignments.

Here, the guard ψ is a linear formula, and both interval boundaries αx and βx are linear terms for each 
variable x ∈ Var : 
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( ) ( )ψv   iff   Invv ∈

[ ]{ }.Var  x|  ,: ∈=⇒ xxx βαψ

( ) ( ) ( ) ( ) ( )xx v xv'  Var.v x   v    iff    vv βαψμ', ≤≤∈∀∧∈



Examples: A Water-Level Monitor

The water level in a tank is 
controlled through a monitor, which 
continuously senses the water level 
and turns a pump on and off. The 
water level changes as a piecewise-
linear function over time.

• When the pump is off, the water 
level, denoted by the variable y, 
falls by 2 inches per second

• When the pump is on, the water 
level rises by 1 inch per second. 
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l0
𝒙̇𝒙 = 𝟏𝟏, 𝒚̇𝒚 = 𝟏𝟏

y ≤ 10

l1
𝒙̇𝒙 = 𝟏𝟏, 𝒚̇𝒚 = 𝟏𝟏

x ≤ 2

y = 10

x := 0
y = 1

l3
𝒙̇𝒙 = 𝟏𝟏 𝒚̇𝒚 = −𝟐𝟐

x ≤ 2

l2
𝒙̇𝒙 = 𝟏𝟏 𝒚̇𝒚 = −𝟐𝟐

y ≥ 5

y = 5

x := 0

x = 2 x = 2

Suppose that initially the water level is 1 inch and the pump is turned on. We wish to keep the water level 
between 1 and 12 inches. But from the time that the monitor signals to change the status of the pump to the 
time that the change becomes effective, there is a delay of 2 seconds. Thus the monitor must signal to turn the 
pump on before the water level falls to 1 inch, and it must signal to turn the pump off before the water level 
reaches 12 inches.



A Leaking Gas Burner

The hybrid automaton models a leaking gas burner. It is 
assumed that:

• Any leakage can be detected and stopped within 1 
second and

• The gas burner will not leak for 30 seconds after a 
leakage has been stopped. 

We wish to prove that the accumulated time of leakage is 
at most one twentieth of the time in any interval of at least 
60 seconds. 
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l1
𝒙̇𝒙 = 𝟏𝟏
𝒚̇𝒚 = 𝟏𝟏
𝒛̇𝒛 = 𝟏𝟏
x ≤ 1

l2
𝒙̇𝒙 = 𝟏𝟏
𝒚̇𝒚 = 𝟏𝟏
𝒛̇𝒛 = 𝟎𝟎

x := 0

x := 0

x = 0
y = 0
z = 0

x ≥ 30

• In location l1, the gas burner leaks. Location l2 is the non-leaking location

• The integrator z records the cumulative leakage time – the accumulated amount of time that the system has 
spent in location l1. 

• The clock x records the time the system has spent in the current location

• The clock y records the total elapsed time

• We wish to prove that y ≥ 60 ⇒ 20z ≤ y is an invariant of the system.



Formal Verification

Key Problems
– computable (decidable) only for simple dynamics
– computationally expensive
– representation of / computation with continuous sets
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Formal Verification

Fighting complexity with overapproximations
– simplify dynamics
– set representations
– set computations

Overapproximations should be
– conservative
– easy to derive and compute with
– accurate (not too many false positives)

31



Modeling Hybrid Systems: Bouncing Ball

– ball with mass m and position x in free fall
– bounces when it hits the ground at x = 0
– initially at position x0 and at rest

32

x

0

Fg



Condition for Free Fall
– ball above ground:

First Principles (physical laws)

• gravitational force :
Fg = −mg

g = 9.81m/ s2

• Newton's law of motion :
mẍ = Fg

Part I – Free Fall

x ≥ 0

33

x

0

Fg



Obtaining 1st Order ODE System
• ordinary differential equation ẋ = f (x)

• transform to 1st order by introducing variables for higher derivatives

Part I – Free Fall

Fg = −mg
mẍ = Fg

• here: v = ẋ:
ẋ = v
v̇ = −g

x

0

Fg

34



Part II – Bouncing

Conditions for “Bouncing”
• ball at ground position: x = 0

• downward motion: v < 0

Action for “Bouncing”
• velocity changes direction

• loss of velocity (deformation, friction)

• v := −cv, 0 ≤ c≤ 1
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Combining Part I and II

Free Fall
• while x ≥ 0,

Bouncing
• if x = 0 and v < 0

v := −cv

ẋ = v
v̇ = −g

continuous dynamics
ẋ = f (x)

discrete dynamics

x ∈G, x := R(x)

36



Hybrid Automaton Model

x ≥ 0

ẋ = v
v̇ = −g

bounce
x = 0∧v < 0

v := −cv

freefall

x = x0 
v = 0

flow

location

invariant

discrete transition

guard

label

reset

initial conditions

37



Hybrid Automata - Semantics

Run
– sequence of discrete transitions and time elapse

Execution
– run that starts in the initial states

x0(t)

38

x1(t)

x2(t)



Execution of Bouncing Ball
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time t

position x

δ0
0

…

x0(t)
x0

x1(t)
x2(t)

x3(t)

δ1 δ2 δ3

time t

velocity v

0
…

v0

v0(t)
v1(t)

v3(t)v2(t)

δ0 δ1 δ2 δ3



State-Space View (infinite time range)
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discrete transition

position x

velocity v

x0(t)

x1(t)

x2(t)

0



Successor functions
• discrete transitions : Post d(R)

• time elapse : Post c(R)

R 0

R 1=Postc(R 0)

R 3=Postc(R 2)

R 2=Postd(R 1)

0

Computing Reachable States

41



Computing Reachable States

Fixpoint computation
• Initialization: R0 = Ini

• Recurrence: Rk+ 1 = Rk ∪Post d(Rk)∪Post c(Rk)

• Termination: Rk+ 1 = Rk ⇒ Reach = Rk .

Problems
– in general termination not guaranteed
– time-elapse very hard to compute with sets

4
2



Reachability with Linear Hybrid Automata
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Compute time elapse states PostC(S)

Theorem [Alur et al.]

– Time elapse along arbitrary trajectory iff time elapse along straight line (convex invariant).

– Time elapse along straight line can be computed as projection along cone [Halbwachs et al.]

Inv



ction

pro e

s t onsna
ors of

tr
sse

3. com
ccus
pu etnoct

ybespaeem2 t

Reachability with Linear Hybrid Automata [Halbwachs, Henzinger, 93-97]
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1. get projection 
cone

invariant

successors

initial states

derivatives
projection 
cone

2. time elapse by 
projection 3. compute 

successors of 
transitions



Piecewise Affine Hybrid Systems

45

• Another class of (not quite so) simple dynamics

• Exact computation of time elapse only at discrete points in time
• used to overapproximate continuous time

Linear functionAffine function



Piecewise Affine Hybrid Systems
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Affine dynamics
– Flow:

ẋ = Ax+ b (deterministic)
ẋ∈Ax+ B , with B a set (nondeterministic)

– For time elapse it’s enough to look at a single location.

Linear Dynamics

Let’s begin with “autonomous” part of the 
dynamics:

ẋ = Ax, x∈Rn

Known solutions:
• analytic solution in continuous time
• explicit solution at discrete points in time 

(up to arbitrary accuracy)

Approach for Reachability:
– Compute reachable states over finite time:

Reach[ 0,T ]( Xini ) 
– Use time-discretization, but with care!



Time-Discretization for an Initial Point

• Analytic solution: 𝒙𝒙 𝒕𝒕 = 𝒆𝒆𝑨𝑨𝑨𝑨𝒙𝒙𝑰𝑰𝑰𝑰𝑰𝑰
• With 𝒕𝒕 = 𝜹𝜹𝜹𝜹:

𝒙𝒙 𝜹𝜹 𝒌𝒌 + 𝟏𝟏 = 𝒆𝒆𝑨𝑨𝑨𝑨𝒙𝒙(𝜹𝜹𝜹𝜹)

• Explicit solution in discretized time:

• 𝒙𝒙𝟎𝟎 = 𝒙𝒙𝑰𝑰𝑰𝑰𝑰𝑰
• 𝒙𝒙𝒌𝒌+𝟏𝟏 = 𝒆𝒆𝑨𝑨𝜹𝜹𝒙𝒙𝒌𝒌
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0 δ 2δ 3δ t

x0
x1

x2

x3
x(t)

Multiplication with constant 
matrix 𝒙𝒙𝑨𝑨𝜹𝜹 = linear transform



Time-Discretization for an Initial Set
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0 δ 2δ 3δ t

X 0
X 1

X 2

X 3

Reach[ 0, 3δ ](xIni)

• Acceptable solution for purely continuous systems
• x( t) is in ε (δ ) -neighborhood of some X k

• Unacceptable for hybrid systems
– discrete transitions might “fire” between sampling times
– if transitions are “missed”, then x( t) is not in ε (δ ) -neighborhood

• Explicit solution in discretized time:

• 𝒙𝒙𝟎𝟎 = 𝒙𝒙𝑰𝑰𝑰𝑰𝑰𝑰
• 𝒙𝒙𝒌𝒌+𝟏𝟏 = 𝒆𝒆𝑨𝑨𝜹𝜹𝒙𝒙𝒌𝒌



Goal:
– Compute sequence Ωk over bounded time [ 0, Nδ ] such that:

Reach[ 0, Nδ ]( xIni ) ⊆ Ω0∪Ω1∪. . .∪ΩN

Approach:

• Refine Ωk by recurrence

𝛀𝛀𝒌𝒌+𝟏𝟏 = 𝒆𝒆𝑨𝑨𝜹𝜹𝛀𝛀𝒌𝒌

• Condition for Ω0 :

Reach[ 0, δ ]( xIni ) ⊆ Ω0

Reachability by Time-Discretization
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Time-Discretization with Convex Hull
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X 0

X 1

Over-approximating Reach[ 0, δ ]:

Reach[ 0, δ ](xIni) Conv(x0, x1)
(convex hull)

Bloat(Conv(x0, x1))



Time-Discretization with Convex Hull
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Bouncing Ball:

Ω0

X 0

X 1

X 0

X 1

Ω0



Approximate Analysis

Approximation Operators:
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Analysis of Leaking Gas Burner
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Source: [Gonnord, Halbwachs, LNCS 4134] 
Combining widening and acceleration in 
linear relation analysis. 

Step-1: Leaking location reached with 
{ t = l = 0 }, and as time elapses we 
get the polyhedron { 0 ≤ t = l ≤ 10 } 
(Region (1) in Fig. 2.a)

Step-2: Non-leaking location is reached 
with { 0 ≤ t = l ≤ 10 }. As time elapses, 
we get { 0 ≤ l ≤ 10, t ≥ l }. 
(Region (2) in Fig. 2.b)

Step-3: We go back to leaking location 
with { 0 ≤ l ≤ 10, t ≥ l + 50 }. 
(Region (3) in Fig. 2.c). 
Convex hull with { t = l = 0 } gives 
{ 0 ≤ l ≤ 10, t ≥ 6l }. 
(Region (4) in Fig. 2.c)

Step-3 (contd): Time passage yields { 0 ≤ l ≤ 20, t ≥ l, t ≥ 6l – 50 }. 
Now standard widening  yields { 0 ≤ l ≤ t, t ≥ 6l – 50 }. 
(Region (5) in Fig. 2.c)
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